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Proof: Let f(v,s) be the maximum number of minimum dominating sets
among all forests with domination number ~ and s strong support vertices.
We show

f(7,5) <a®8777,
where62—35—|—1—Oandai5 , that is,

B ~2.618 and o ~ 1.618.

f(1,0)=2< 6.
f(v,7)=1<a.
Suppose, for a contradiction,

f(v,s) >a®B77°

with 4 minimum.

Consider a corresponding forest F.
Some component T of F is not a star.
Consider a longest path uvw ... in T.



Case 1



Case 1 v and w are strong support vertices.



Case 1 v and w are strong support vertices.
F



Case 1 v and w are strong support vertices.
F



Case 1 v and w are strong support vertices.

F F1)

V N



Case 1 v and w are strong support vertices.

F F1)
w
V N
u



Case 1 v and w are strong support vertices.

F F1)
w
V N
u

f(775) < f(’)/ —1,s— 1)



Case 1 v and w are strong support vertices.

F F1)
w
V N
u

f(77 S) S f(")/ - 17 S — 1) S Of?lﬂ’y*s



Case 1 v and w are strong support vertices.

F F1)
w
V N
u

f(77 S) < f(")/ - 17 s — 1) < Of?lﬂ’y*s < CVS/B’Yis-



Case 2



Case 2 w is a strong support vertex but not v.



Case 2 w is a strong support vertex but not v.
F



Case 2 w is a strong support vertex but not v.

F F()

f N



Case 2 w is a strong support vertex but not v.

F F()

f N

f(7,s)



Case 2 w is a strong support vertex but not v.
F

F()
w
14 \X
u

f(v,s) <2f(y—1,s)



Case 2 w is a strong support vertex but not v.

F F()

f N

f(v,s) <2f(y—1,5) <2a°877°!



Case 2 w is a strong support vertex but not v.

F F(1)

f AN

2
F(7,5) < 2f(y — 1,5) < 2057512 021>,



Case 3



Case 3 v is a strong support vertex but not w.



Case 3 v is a strong support vertex but not w.
F



Case 3 v is a strong support vertex but not w.

F F) F)

w o U



Case 3 v is a strong support vertex but not w.

F F) F)

v <



Case 3 v is a strong support vertex but not w.

F F()

F()



Case 3 v is a strong support vertex but not w.

F F) F)
w SV
v AN

u

f(v,s) < f(y—1,s)+f(y—1,s—1)



Case 3 v is a strong support vertex but not w.

F F) F)
w VAV,
v \\X
u
f(v,s) < f(y—1,s)+f(y—1,s—1)
< o lpaslgrs



Case 3 v is a strong support vertex but not w.

F F) F)
w VAV,
v \\X
u
f(v,s) < f(y—1,s)+f(y—1,s—1)
< o lpaslgrs

G2



Case 3 v is a strong support vertex but not w.

F F() F(2)
w \_K VAV,
174

f(’}/as) S f(77175)+f(’}/71’571)
< asg'y—s—l +as—157—s

G2

a’prme,



Case 4



Case 4 v and w are both no strong support vertices.



Case 4 v and w are both no strong support vertices.
F



Case 4 v and w are both no strong support vertices.

F F(1) F2) F®)

v W \X JV



Case 4 v and w are both no strong support vertices.

F F(1) F2) F®)



Case 4 v and w are both no strong support vertices.

F F(1) F2) F®)
w Y, \X VAV,
174

f(v,s) < f(y—Ls)+f(v—1,s+1)+f(y—1,s)



Case 4 v and w are both no strong support vertices.

F F(1) F2) F®)
w Y, \X VAV,
174

f(v,s) < f(v—1,s)+f(y—1,s+1)+f(y—1,s)
< aslgﬁ/fsfl +as+1ﬂ77572 _{_asB'yfsfl



Case 4 v and w are both no strong support vertices.

F F F@) 26
v
u
flv,s) < f(y—1,8)+f(y—1,s+1)+f(y—1,5)
< ospl g gstlgims 2 gs sl

(2, a) s
- <5+52>"‘5



Case 4 v and w are both no strong support vertices.

F F(1) F2) F®)
w Y, \¥¥§\ VAV,
174

f(v,s) < f(v—1,s)+f(y—1,s+1)+f(y—1,s)
< aslgﬁ/fsfl +as+1ﬂ77572 _{_asB'yfsfl

(2, a\ s
- <ﬁ+w>aﬁ

= a*f"



Case 4 v and w are both no strong support vertices.

F F(1) F2) F®)
w Y, \¥¥§\ VAV,
174

f(v,s) < f(v—1,s)+f(y—1,s+1)+f(y—1,s)
< aslgﬁ/fsfl +as+1ﬂ77572 _{_asB'yfsfl

(2, a\ s
- <ﬁ+w>aﬁ

= a*f"



What about total domination?



What about total domination?

AN



What about total domination?




What about total domination?

Conjecture (HMR ‘18)

If a tree T has order n at least 2 and total domination number ¢, then T
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Theorem (MR '18)

If T is a tree of order n and independence number o, then T has at most

on—a-l41  if2a=n, and
gn—a-1 L if2a>n

maximum independent sets.
Furthermore, equality holds if and only if T arises by subdividing n — a — 1
edges of Ky, once.
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Theorem (Turan ‘41)

For n,p € N, the graph T,_1(n) maximizes m(G) among all graphs G of
order n with no p-clique.

For a graph G and g € N, let
1w(9(G)
be the number of g-cliques in G. In particular,

m(G) = tw?(G).
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Corollary

If G is a graph of order n and independence number o with oo < n, then

fa(G) < g(n, ) = {21"“‘“0‘ LnJa—(nmoda)'

«

with equality if and only if G is isomorphic to G(n,a) = T4(n).

Figure: The graph G(17,3) = T3(17)
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Moon and Moser's result (‘65) on the maximum number of maximal
independent sets implies

33 ,ifn mod3=0,
ta(G) < (4. 35" ifn mod3=1, and
2.3 ,ifn mod3=2

for every graph G of order n.

VVI

Griggs, Grinstead, and Guichard have shown a similar result for connected
graphs.
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Derikvand and Oboudi '14 made a conjecture concerning

max{ fa(G) : G is a connected graph of order n

and independence number a},

which they verify for a € {1,2,n—3,n—2,n— 1}.
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Definition

For & > 2 define F(n,a) as the graph with a cliques,

V(G) = GU...UCy—1 of order [2] and |Z]. The only other edges of
F(n, ) are incident to a vertex xg of the largest clique that has exactly
one neighbor in every other clique. Let

_ {F(n,a),G} ifn=5and a=2
AU {{F(n,a)} otherwise.
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For 2 < 2 define F(n, ) as the class of all connected graphs F such that
there is a vertex xp with the property that F — xp = G(n — 1, ).




Definition
For 2 < 2 define F(n, ) as the class of all connected graphs F such that
there is a vertex xp with the property that F — xp = G(n — 1, ).

Figure: A member of F(7,4), the dashed lines stand for possible edges
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-

X0

Figure: The graph F(14,4)

f(n,a) = g(nfl,a)+<[2



Theorem

If G is a connected graph of order n and independence number o with
a < n, then fa(G) < f(n,«) with equality if and only if G is isomorphic
to a graph in F(n, ).
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Suppose that the theorem fails, and that n is the smallest order of a
counterexample Gg. We may assume that:

e Gp maximizes fa(Gp) among all connected graphs of order n and
independence number «

en>6and a>2

Let the vertex x of Gy maximize fa(Go, x).



Proof sketch:

Suppose that the theorem fails, and that n is the smallest order of a
counterexample Gg. We may assume that:

e Gp maximizes fa(Gp) among all connected graphs of order n and
independence number «

en>6and a>2

Let the vertex x of Gy maximize (G, x). Define N := Ng,[x].
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We recursively construct a finite sequence of graphs
Go, - .., Gk
applying the Moon-Moser operation: If there is a vertex y; € N that is no

cutvertex of Gj_1 and Ng,_,[yi] # N, we construct G; by turning y; into a
true twin of x.

X Yi X Yi
. ¢ E j '
For the number of maximum independent sets in G; it holds that:

ta(G;) = fa(Gi—1) + ta(Gj—1,x) — fa(Gi1,yi) > fa(Gj-1)
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Let the graph G arise from Gi by removing iteratively as long as possible
one by one edges between N and V/(Gk) \ N such that the resulting graph
remains connected, and still has independence number «.

Note that the following holds for G:

@ Every vertex y € N is either a cutvertex of G or Ng[y] = N.
° fa(G) = fa(Gy) = ta(Go)

It is possible to show that:

Claim
G is isomorphic to a graph in F(n, ).
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G\ N

Claim

There is a vertex y in B, and a private component C of y such that C
has order at least 2, and y has exactly one neighbor in V(C).
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Now it is possible to show that G € F(n, ). What does this mean for
G, ? It holds that

o If Z > 2, then no edge can be added to G without reducing fa(G)

e If = < 2, then the only edges that can be added to G without
reducing a(G) or fa(G), are incident with the special cutvertex xp of
G.

= Gy is isomorphic to a graph in F(n, a).

One can show that if kK > 1 we have fa(Gk_1) < fa(Gk), which is a
contradiction. [J



Thank you!



