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Bień at CID 2017

No!

s s s s s s s
ss HH

HH
��

��h
h

3 + 5 + 5 + 5 = 18 > 16 = 24

2 / 35



Fricke, Hedetniemi, Hedetniemi, and Hutson ‘11

Does every tree with domination number γ have at most 2γ min-
imum dominating sets?
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Disjoint unions of Bień’s tree yield forests with

18
γ
4 ≈ 2.0598γ

minimum dominating sets.

Conjecture (ADMR ‘18)

A tree with domination number γ has at most

O

(
γ2γ

ln γ

)
minimum dominating sets.
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Theorem (ADMR ‘18)

A forest with domination number γ has at most

2.4606γ

minimum dominating sets.
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Theorem (ADMR ‘18)

A forest with domination number γ has at most

2.6180γ

minimum dominating sets.
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Proof:

Let f (γ, s) be the maximum number of minimum dominating sets
among all forests with domination number γ and s strong support vertices.
We show

f (γ, s) ≤ αsβγ−s ,

where β2 − 3β + 1 = 0 and α = β
β−1 , that is,

β ≈ 2.618 and α ≈ 1.618.

f (1, 0) = 2 < β.
f (γ, γ) = 1 < αγ .
Suppose, for a contradiction,

f (γ, s) > αsβγ−s

with γ minimum.
Consider a corresponding forest F .
Some component T of F is not a star.
Consider a longest path uvw . . . in T .
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Case 1

v and w are strong support vertices.
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f (γ, s) ≤ f (γ − 1, s − 1) ≤ αs−1βγ−s < αsβγ−s .
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Case 2

w is a strong support vertex but not v .
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Case 3

v is a strong support vertex but not w .
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≤ αsβγ−s−1 + αs−1βγ−s

=

(
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+
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α

)
αsβγ−s

= αsβγ−s ,
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What about total domination?
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Conjecture (HMR ‘18)

If a tree T has order n at least 2 and total domination number γt , then T
has at most (

n − γt
2

γt
2

) γt
2

minimum total dominating sets.
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Theorem (HMR ‘18)

If a forest F has order n, no isolated vertex, and total domination number
γt , then F has at most

min

{

(
8
√
e
)γt (n − γt

2
γt
2

) γt
2

,

en−γt

,

1.4865n

}
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Proof sketch:

Let D be some minimum total dominating set.
T = T ′+ endvertices attached to the vertices in D.
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What about independence?

Theorem (MR ‘18)

If T is a tree of order n and independence number α, then T has at most{
2n−α−1 + 1 , if 2α = n, and

2n−α−1 , if 2α > n

maximum independent sets.
Furthermore, equality holds if and only if T arises by subdividing n−α− 1
edges of K1,α once.
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Let Tp(n) be the Turán graph of order n with p partite sets.

Theorem (Turán ‘41)

For n, p ∈ N, the graph Tp−1(n) maximizes m(G ) among all graphs G of
order n with no p-clique.

For a graph G and q ∈ N, let

]ω(q)(G )

be the number of q-cliques in G . In particular,

m(G ) = ]ω(2)(G ).
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Theorem (Zykov ‘49)

Let n, q, and p be integers with 2 ≤ q < p ≤ n.

If G is a graph of order n with no p-clique, then

]ω(q)(G ) ≤ ]ω(q) (Tp−1(n))

with equality if and only if G = Tp−1(n).
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Proof:

Let G with order n and no p-clique maximize ]ω(q)(G ).

Let G0 arise from G by removing all edges that do not belong to a q-clique.

]ω(q)(G0) = ]ω(q)(G ).

Let d (q)(u) be the number of q-cliques that contain u.

Claim

G0 is a complete multipartite graph.

Proof of the claim:

vr wr
r
u
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Case 1 d (q)(u) < d (q)(v)

vr wr
r
u

−→

vr wrv ′r

G0 − u + v ′ has

]ω(q)(G0)− d (q)(u) + d (q)(v) > ]ω(q)(G )

q-cliques.
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Case 2 d (q)(u) ≥ d (q)(v), d (q)(w)

vr wr
r
u

−→ r r r
u′′u′u

Since vw belongs to some q-clique, G0 − v − w + u′ + u′′ has

]ω(q)(G0)− d (q)(v)− d (q)(w) + 1 + 2d (q)(u) > ]ω(q)(G )

q-cliques. �
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G0 has p − 1 (possibly empty) partite sets.

Since ]ω(q)(G0) = ]ω(q)(G ), the choice of G implies

G0 = Tp−1(n).

Since adding any non-edge creates a p-clique,

G = G0.

�
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Corollary

If G is a graph of order n and independence number α with α < n,

then

]α(G ) ≤ g(n, α) =
⌈ n
α

⌉nmodα ⌊ n
α

⌋α−(nmodα)
.

with equality if and only if G is isomorphic to G (n, α) = Tα(n).

Figure: The graph G (17, 3) = T 3(17)
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Moon and Moser’s result (‘65) on the maximum number of maximal
independent sets implies

]α(G ) ≤


3

n
3 , if n mod 3 = 0,

4 · 3
n−4
3 , if n mod 3 = 1, and

2 · 3
n−2
3 , if n mod 3 = 2,

for every graph G of order n.

Griggs, Grinstead, and Guichard have shown a similar result for connected
graphs.
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What happens with ]α(G ) in connected graphs?

Derikvand and Oboudi ‘14 made a conjecture concerning

max
{

]α(G ) : G is a connected graph of order n

and independence number α
}
,

which they verify for α ∈ {1, 2, n − 3, n − 2, n − 1}.
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Definition

For n
α ≥ 2 define F (n, α) as the graph with α cliques,

V (G ) = C0∪̇ . . . ∪̇Cα−1 of order
⌈
n
α

⌉
and

⌊
n
α

⌋
. The only other edges of

F (n, α) are incident to a vertex x0 of the largest clique that has exactly
one neighbor in every other clique.

Let

F(n, α) =

{
{F (n, α),C5} if n = 5 and α = 2

{F (n, α)} otherwise.

x0

Figure: The graph F (14, 4)
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Definition

For n
α < 2 define F(n, α) as the class of all connected graphs F such that

there is a vertex x0 with the property that F − x0 = G (n − 1, α).

x0

Figure: A member of F(7, 4), the dashed lines stand for possible edges
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How many maximum independent sets does a member of F(n, α) have?

x0

Figure: The graph F (14, 4)

f (n, α) = g(n − 1, α) +
(⌊ n
α

⌋
− 1
)α−nmodα

·
(⌈ n
α

⌉
− 1
)nmodα−1

27 / 35



How many maximum independent sets does a member of F(n, α) have?

x0

Figure: The graph F (14, 4)

f (n, α) = g(n − 1, α) +
(⌊ n
α

⌋
− 1
)α−nmodα

·
(⌈ n
α

⌉
− 1
)nmodα−1

27 / 35



How many maximum independent sets does a member of F(n, α) have?

x0

Figure: The graph F (14, 4)

f (n, α) =

g(n − 1, α) +
(⌊ n
α

⌋
− 1
)α−nmodα

·
(⌈ n
α

⌉
− 1
)nmodα−1

27 / 35



How many maximum independent sets does a member of F(n, α) have?

x0

Figure: The graph F (14, 4)

f (n, α) = g(n − 1, α) +

(⌊ n
α

⌋
− 1
)α−nmodα

·
(⌈ n
α

⌉
− 1
)nmodα−1

27 / 35



How many maximum independent sets does a member of F(n, α) have?

x0

Figure: The graph F (14, 4)

f (n, α) = g(n − 1, α) +
(⌊ n
α

⌋
− 1
)α−nmodα

·
(⌈ n
α

⌉
− 1
)nmodα−1

27 / 35



Theorem

If G is a connected graph of order n and independence number α with
α < n, then ]α(G ) ≤ f (n, α) with equality if and only if G is isomorphic
to a graph in F(n, α).
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Proof sketch:

Suppose that the theorem fails, and that n is the smallest order of a
counterexample G0. We may assume that:

G0 maximizes ]α(G0) among all connected graphs of order n and
independence number α

n ≥ 6 and α ≥ 2

Let the vertex x of G0 maximize ]α(G0, x). Define N := NG0 [x ].
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We recursively construct a finite sequence of graphs

G0, . . . ,Gk

applying the Moon-Moser operation:

If there is a vertex yi ∈ N that is no
cutvertex of Gi−1 and NGi−1

[yi ] 6= N, we construct Gi by turning yi into a
true twin of x .

x yi x yi

For the number of maximum independent sets in Gi it holds that:

]α(Gi ) = ]α(Gi−1) + ]α(Gi−1, x)− ]α(Gi−1, yi ) ≥ ]α(Gi−1)
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Let the graph G arise from Gk by removing iteratively as long as possible
one by one edges between N and V (Gk) \ N such that the resulting graph
remains connected, and still has independence number α.

Note that the following holds for G :

Every vertex y ∈ N is either a cutvertex of G or NG [y ] = N.

]α(G ) ≥ ]α(Gk) = ]α(G0)

It is possible to show that:

Claim

G is isomorphic to a graph in F(n, α).
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N

G \ N

B

y C

Claim

There is a vertex y in B, and a private component C of y such that C
has order at least 2, and y has exactly one neighbor in V (C ).
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y ′

C ′
C ′′

x0

Claim

The graph G has a cutvertex y ′ such that

G − y ′ has exactly two components C ′ and C ′′,

C ′ is a clique,

y ′ is adjacent to every vertex of C ′, and

y ′ has exactly one neighbor in C ′′.
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Now it is possible to show that G ∈ F(n, α). What does this mean for
Gk?

It holds that

If n
α ≥ 2, then no edge can be added to G without reducing ]α(G )

If n
α < 2, then the only edges that can be added to G without

reducing α(G ) or ]α(G ), are incident with the special cutvertex x0 of
G .

=⇒ Gk is isomorphic to a graph in F(n, α).

One can show that if k ≥ 1 we have ]α(Gk−1) < ]α(Gk), which is a
contradiction. �
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Thank you!
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